17 October 2022

Folding features and dynamics of 3D genome architecture in plant fungal pathogens

Xia, C.J., Huang, L.†, Huang, J., Zhang, H., Huang, Y., Benhamed, M., Wang, M.N., Chen, X.M., Zhang, M., Chen, W.Q., and Liu, T.G - Environmental microbiology, 2022


The folding and dynamics of three-dimensional (3D) genome organization are fundamental for eukaryotes executing genome functions but have been largely unexplored in nonmodel fungi. Using high-throughput sequencing coupled with chromosome conformation capture (Hi-C) data, we generated two chromosome-level assemblies for Puccinia striiformis f. sp. tritici, a fungus causing stripe rust disease on wheat, for studying 3D genome architectures of plant pathogenic fungi. The chromatin organization of the fungus followed a combination of the fractal globule model and the equilibrium globule model. Surprisingly, chromosome compartmentalization was not detected. Dynamics of 3D genome organization during two developmental stages of P. striiformis f. sp. tritici indicated that regulation of gene activities might be independent of the changes of genome organization. In addition, chromatin conformation conservation was found to be independent of genome sequence synteny conservation among different fungi. These results highlighted the distinct folding principles of fungal 3D genomes. Our findings should be an important step toward a holistic understanding of the principles and functions of genome architecture across different eukaryotic kingdoms.

Read the entire publication

Share this:

Receive updates from the Crop Science Centre

Thanks! We’ve received your email.

Sorry, something went wrong.

By submitting this form, you are consenting to receive marketing emails from: The Crop Science Centre, Lawrence Weaver Rd, Cambridge, CB3 0LE, GB. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact.