Cereal symbiosis

We study the molecular mechanisms underlying the formation and function of arbuscular mycorrhizal (AM) symbiosis in rice and maize.

In order to maximise mycorrhizal benefits in crops we are studying the signaling mechanisms that enable the establishment of AM symbiosis and effective symbiotic mineral acquisition. We also aim to develop our knowledge of these associations to optimize the incorporation of the AM symbiosis into sustainable agricultural practices.

We will continue to identify and functionally characterise plant genetic determinants that impact the plant’s reprogramming for symbiosis and therefore the effectiveness of AM symbioses in rice and other cropping systems.

We would like to understand the regulation and dynamics of the symbiotic phosphate and nitrogen uptake pathway under laboratory and field conditions. This will help us exploit the symbiosis and develop cereal cultivars better adapted to low-input rice agro-ecosystems. Our approaches combine molecular genetics and advanced live imaging, covering the scales from field to cells and back.

Research areas

Rhizosphere communication

Establishment of AM symbioses relies on the continuous orchestration of signals to achieve recognition and coordination of the interacting organisms. We have identified genetic determinants of the rhizosphere dialogue from rice and maize. Their functional characterization will shed light on the communicative signal exchange, “sending” and “receiving”, that impacts on the plant’s reprogramming for symbiosis and therefore on the effectiveness of AM symbioses in rice and other cropping systems.

Symbiotic phosphate acquisition

Phosphate (Pi) acquisition of crops via AM symbioses gains increasing importance due to limited Pi reserves and demand for environmentally sustainable agriculture. We found that 70% of the Pi acquired by aerobically- grown rice is delivered via the symbiotic route. We would like to understand the functioning and regulation of this pathway under laboratory and field conditions to exploit the symbiosis and develop rice cultivars better adapted to low-input rice agro-ecosystems.

Arbuscules, the heart of the symbiosis

‘Arbuscules’ are fascinating fungal feeding structures, produced inside root cortical cells by arbuscular mycorrhizal fungi. Arbuscules are built by consecutive dichotomous hyphal branching, ultimately adopting a complex tree-like shape at microscopic scale. As the arbuscule develops, the hostplant cell undergoes fundamental architectural adaptations to accommodate the intracellularly expanding fungus.

For instance, the plant cell dramatically increases membrane biogenesis to envelope the growing hyphal structure in the so-called peri-arbuscular membrane. The hugely enlarged membrane surface area between the two organisms appears ideal for the exchange of signals and nutrients.

Remarkably, despite what seems a considerable metabolic investment, arbuscules collapse after a few days, and host cell architecture is restored to that of a non-colonized cell. Therefore, the life of an arbuscule is marked by the highly dynamic continuum of development and collapse without static intermediate stages. To capture arbuscule formation and turnover in 4D, and at ultrastructural resolution, we combine advanced multiphoton confocal imaging of living mycorrhizal rice roots with high resolution electron microscopy.

About the group leader

Uta Paszkowski is Professor of Plant Molecular Genetics at the Department of Plant Sciences of the University of Cambridge and leads the Cereal Symbiosis Group at the Crop Science Centre. She did her undergraduate studies at the University Cologne (Germany) gaining a Master (Diplom) degree in phytopathology at the Max-Planck Institute for Plant Breeding.

Uta received her PhD in Biotechnology at the ETH-Zurich (Switzerland) and conducted two postdocs on molecular genetics of arbuscular mycorrhizal symbiosis at the University Basel (Switzerland) and the Torrey Mesa Research Institute in San Diego (USA).

She started her own research group at the University of Geneva (Switzerland), followed by an Assistant Professorship position at the University Lausanne (Switzerland) before moving to Cambridge University in October 2012 where she now is a full professor.

Led by

Uta Paszkowski

Uta Paszkowski

Head of Cereal Symbiosis Group

Research group staff

Gizem Cataltepe

Gizem Cataltepe

PhD student

Tania Chancellor

Tania Chancellor

Postdoctoral research associate

Gabriel Ferreras Garrucho

Gabriel Ferreras Garrucho

PHD student

Liam German

Liam German

Postdoctoral researcher associate

Tessa Grainger

Tessa Grainger

Research laboratory technician

Mia Horton

Mia Horton

Research laboratory technician

Thomas Irving

Thomas Irving

Postdoctoral research associate

Dylan Jones

Dylan Jones

Postdoctoral research associate

Federico Marangelli

Federico Marangelli

PhD student

Jen McGaley

Jen McGaley

Postdoctoral research associate

Martina Orvošová

Martina Orvošová

PhD student

Miguel Ângelo Santos

Miguel Ângelo Santos

Postdoctoral research associate

Emily Servante

Emily Servante

Postdoctoral research associate

Other research groups

Stéphanie Swarbreck

Crop Molecular Physiology

Led by Stéphanie Swarbreck

Crop Molecular Physiology group researches nitrogen responsiveness at the gene, the whole plant and the plot level, in order to discover and select crop varieties with a low nitrogen requirement and well adapted to regenerative agriculture practises

Ji Zhou

Artificial Intelligence and Data sciences

Led by Ji Zhou

This group combines AI, computer vision, and data analytics with expertise in plant phenotyping, breeding, and agronomy to enhance crop production in the UK and developing countries

Natasha Yelina

Crop breeding technologies

Led by Natasha Yelina

Novel breeding technologies in legume crops to enhance the production of new cultivars adapted to changing climatic conditions, as well as having sustainable yields.

Jeongmin Choi

Crop resilience

Led by Jeongmin Choi

As sessile organisms, plants have evolved sophisticated mechanisms to help cope with environmental stress.

Lida Derevnina

Crop pathogen immunity

Led by Lida Derevnina

We aim to functionally characterise the NRC network and determine the molecular basis of NLR network mediated immunity.

Giles Oldroyd

Sustainable crop nutrition

Led by Giles Oldroyd

The availability of sources of nitrogen and phosphorus are major limitations to crop productivity. This is primarily addressed through the application of inorganic fertilisers to augment these limiting nutrients.

Sebastian Eves-van den Akker

Plant-parasitic interactions

Led by Sebastian Eves-van den Akker

Combining genomics and molecular biology to understand fundamental questions in host:parasite biology

Receive updates from the Crop Science Centre

Thanks! We’ve received your email.

Sorry, something went wrong.

By submitting this form, you are consenting to receive marketing emails from: The Crop Science Centre, Lawrence Weaver Rd, Cambridge, CB3 0LE, GB. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact.