1 June 2023

A highly contiguous genome assembly reveals sources of genomic novelty in the symbiotic fungus Rhizophagus irregularis.

Manley BF, Lotharukpong JS, Barrera-Redondo J, Llewellyn T, Yildirir G, Sperschneider J, Corradi N, - G3 Genes|Genomes|Genetics,, 2023

Abstract

The root systems of most plant species are aided by the soil-foraging capacities of symbiotic arbuscular mycorrhizal (AM) fungi of the Glomeromycotina subphylum. Despite recent advances in our knowledge of the ecology and molecular biology of this mutualistic symbiosis, our understanding of the AM fungi genome biology is just emerging. Presented here is a close to T2T genome assembly of the model AM fungus Rhizophagus irregularis DAOM197198, achieved through Nanopore long-read DNA sequencing and Hi-C data. This haploid genome assembly of R. irregularis, alongside short- and long-read RNA-Sequencing data, was used to produce a comprehensive annotation catalog of gene models, repetitive elements, small RNA loci, and DNA cytosine methylome. A phylostratigraphic gene age inference framework revealed that the birth of genes associated with nutrient transporter activity and transmembrane ion transport systems predates the emergence of Glomeromycotina. While nutrient cycling in AM fungi relies on genes that existed in ancestor lineages, a burst of Glomeromycotina-restricted genetic innovation is also detected. Analysis of the chromosomal distribution of genetic and epigenetic features highlights evolutionarily young genomic regions that produce abundant small RNAs, suggesting active RNA-based monitoring of genetic sequences surrounding recently evolved genes. This chromosome-scale view of the genome of an AM fungus genome reveals previously unexplored sources of genomic novelty in an organism evolving under an obligate symbiotic life cycle.

Read the entire publication

Share this:

Receive updates from the Crop Science Centre

Thanks! We’ve received your email.

Sorry, something went wrong.

By submitting this form, you are consenting to receive marketing emails from: The Crop Science Centre, Lawrence Weaver Rd, Cambridge, CB3 0LE, GB. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact.