23 August 2021

Nod factor receptor complex phosphorylates GmGEF2 to stimulate ROP signaling during nodulation

Gao JP, Xu P, Wang M, Zhang X, Yang J, Zhou Y, Murray JD, Song CP, Wang E - Current Biology, 2021


The establishment of the symbiotic interaction between rhizobia and legumes involves the Nod factor signaling pathway. Nod factor recognition occurs through two plant receptors, NFR1 and NFR5. However, the signal transduction mechanisms downstream of NFR1-NFR5-mediated Nod factor perception remain largely unknown. Here, we report that a small guanosine triphosphatase (GTPase), GmROP9, and a guanine nucleotide exchange factor, GmGEF2, are involved in the soybean-rhizobium symbiosis. We show that GmNFR1α phosphorylates GmGEF2a at its N-terminal S86, which stimulates guanosine diphosphate (GDP)-to-GTP exchange to activate GmROP9 and that the active form of GmROP9 can associate with both GmNFR1α and GmNFR5α. We further show that a scaffold protein, GmRACK1, interacts with active GmROP9 and contributes to root nodule symbiosis. Collectively, our results highlight the symbiotic role of GmROP9-GmRACK1 and support the hypothesis that rhizobial signals promote the formation of a protein complex comprising GmNFR1, GmNFR5, GmROP9, and GmRACK1 for symbiotic signal transduction in soybean.

Share this:

Receive updates from the Crop Science Centre

Thanks! We’ve received your email.

Sorry, something went wrong.

By submitting this form, you are consenting to receive marketing emails from: The Crop Science Centre, Lawrence Weaver Rd, Cambridge, CB3 0LE, GB. You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email. Emails are serviced by Constant Contact.